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Abstract. The electron Lo-phonon scattering rate is obtained for a thin free-standing GaAs 
wafer. The carriers are assumed to occupy only the lowest subband. The choice of confining 
potential is shown to make a quantitative difference in the variation of the scattering rate 
with wafer thickness. Phonon confinement effects are demonstrated to manifest themselves 
for thicknesses less than around 500 A. It is shown that purely longitudinal surface modes are 
not allowed in these free-standing structures. Surface electromagnetic waves (polaritons), 
which are normal modes of the system exist, though it is argued that their interaction with 
electrons ought to be weak. 

1. Introduction 

In low-dimensional semiconductor structures such as the GaAs/AlGaAs system, the 
interaction of electrons with the polar Lo-phonons is of fundamental importance for 
high field transport. Early theoretical calculations assumed the bulk phonon approxi- 
mation [ 1-31. This was subsequently relaxed in view of light-scattering measurements 
indicating confinement of the optical modes in the GaAs layer [4]. Various theoretical 
models have been proposed to describe these confined phonons. The most commonly 
used are the dielectric continuum theory [5,6] and the dispersive Born and Huang model 
[7-91. Both predict guided and interface modes for the GaAs/AlGaAs system although 
the mode potential symmetries are at variance. What experimental evidence exists 
suggests that it is the dispersive Born and Huang theory which correctly describes the 
symmetry associated with the potentials [lo]. Nevertheless, both descriptions agree that 
interface modes play a dominant role in electron energy relaxation in these GaAs/ 
AlGaAs structures, especially for thin slabs [9]. As for a free-standing GaAs wafer we 
demonstrate that Lo-interface modes do not exist and hence cannot relax the carrier 
energy at high temperatures. 

In this paper we consider the interaction of electrons with the Lo-phonons associated 
with free-standing GaAs wafers. Indeed, free-standing GaAs wires have recently been 
fabricated by Hasko et a1 [ l l ]  and work is under way to grow thin free-standing wafers 
[12]. The electrons in these structures are in general confined to a volume different from 
that of the slab. In practice the carriers deplete away from the surface due to the pinning 
of the Fermi level by surface states [l l] .  Experimentally, the confinement region may 
be controlled by gating the device or varying the doping density. Often in transport 
studies it is advantageous for the width of the electron gas to be narrow in order to 
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Figure 1. The free-standing GaAs wafer of width L .  The hatched area illustrates the Q ~ D  
electron gas of thickness d. Also depicted is the coordinate system employed. 

minimise intersubband events (the so-called extreme quantum limit). The relationship 
between this width and the various parameters (wafer width, doping density, gate 
voltage) is complex and we do not dwell on it here. 

Figure 1 illustrates the system which we consider; a free-standing slab of thickness L 
with the quasi-two-dimensional (Q2D) electron gas confined to a layer of thickness d .  
The confining potential will in practice be approximately quadratic. It is one of the aims 
of this paper to compare the predictions assuming the often used infinite confining 
potential for the scattering rate with that obtained with a more realistic potential. 
Another question that needs to be addressed is how thick the wafer should be in order 
that phonon confinement effects are noticeable. We will see that for typical carrier 
energies the width of the GaAs slab should be less than about 500 A. 

Earlier work on this system has been carried out and our results are compared where 
appropriate. 

2. The interaction Hamiltonian 

The long-wavelength polar Lo-phonons are described by the dispersive continuum 
theory of [7]. It is convenient to work with the reduced ionic displacement field U = 
p'I2w where p is the mass density and w the true ionic displacement field. The reduced 
field satisfies the following vector Helmholtz equation: 

[V2 + (oto - o*)p-2]u = 0. (1) 

Here oLo is the zone-centre Lo-phonon frequency and /3 the acoustic velocity parameter 
which describes the mode dispersion ( oLo = 36.6 meV and p = 5 X lo3 m s-l for GaAs). 

It is convenient to express the solution to (1) in the region -L/2 < z < L/2  in the 
form 

( 2 )  

(3) 

U, = (a, eiqz(z-L/2) + b,  e-iqz(z-L/2)) ei(qr.r-mO 

U ,  = (a, eiqz(z-L/2) + b,  e-iqz(Z-LI2)) ei(qr.r-ol) 

where qr and q, are the wavevectors along and perpendicular to the interfaces respect- 
ively, with a and b mode amplitudes. The dispersion relation is obtained by applying the 
appropriate boundary condition at the interfaces. Within the spirit of the hydrodynamic 
theory, the correct boundary condition for a free-standing slab is simply the vanishing 
ofthepressure (i.e. V - U = 0) at the interfaces. Thisleads, togetherwith the requirement 
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that the modes are purely longitudinal (i.e. V X U = 0), to standing modes. The normal 
wavevector is quantised as expected, viz: 

q ,  = mn/L m=1,2 ,3  . . .  (4) 
with the field components given by (emitting the common exponential factor) 

U ,  = 2i a ,  sin[q,(z - L/2)] 

u z  = 2 ( q z / q r ) a r  cos[qz(z - L/2)I. 
The resulting dispersion relation simply turns out to be 

U’ = w ~ O  - p2Q2 (7) 
where Q = (qr,  q2). It follows from (7) that the number of modes, m, for a given wafer 
of width L is just 

m = Int(oLOL/Pn) (8) 
where Int(. . . .) designates the integer part of ( .  . .). Although there are a number of 
modes for a given practical width we will see that only the lowest order modes are of any 
significance regarding the electron-phonon interaction with the m = 1 mode the most 
dominant. It should be noted that U ,  is non-zero at the interfaces. 

The next step is to determine the interaction Hamiltonian. This is achieved by relating 
the total energy in the cavity to that of an equivalent harmonic oscillator [9]: 

1 M  
2 vo 
-- w2 w* * w d V  = 4Mw’X;. (9) 

The above determines the coefficient a, and together with the relationship between the 
mode potential Q, and the ionic displacement w 

V@ = (e*/VoEo)w (10) 
leads to the following interaction Hamiltonian 

In the above e* is the Callen effective charge, Vo the volume of the unit cell, N the 
number of unit cells in the cavity and X ,  the coordinate of the harmonic oscillator. The 
interaction has the correct Frohlich form being inversely proportional to the phonon 
wavevector Q. 

It should be pointed out that there are no interface modes which are purely longi- 
tudinal (i.e. V x U = 0). The reason for this is as follows. Interface modes may be 
obtained by replacing q2 by iq: in the formalism where q: is a real wavevector charac- 
terising the decay. From the vanishing of the pressure at the boundary this wavevector 
satisfies sinh(q:d) = 0 which leads to q: = 0 for all modes, this is unphysical since, from 
( 5 )  and (6), the mode amplitude is identically zero. (Note that for the standing modes 
the boundary condition led to sin q,d = 0 and hence the quantisation of the normal wave 
vector.) Any surface modes that are allowed cannot be described by an eQ, Frohlich 
Hamiltonian which applies only to longitudinal excitations. Surface phonon polaritons 
which are transverse solutions to Maxwell’s equations are allowed, indeed they have 
been extensively studied [ 13-15]. Polaritons are coupled photon-transverse-optic- 
phonon excitations which have an electromagnetic part as well as a mechanical 
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component. The mechanical component contributes to the usual deformation potential 
scattering which in any case does not effect electrons in a r minima [16]. The elec- 
tromagnetic contribution scatters the carriers only very weakly [17] since the correct 
interaction Hamiltonian is the usualp * A  wherep is the momentum of the carrier andA 
the transverse vector potential associated with the polariton. Some confusion over this 
point has occurred in the literature; e.g. [18, 191. In the so-called non-retarded limit 
( 0 2 ~ ( u ) / c 2 +  0) where &(U) is the frequency dependent dielectric function and c the 
velocity of light in vacuo, the transverse vector potential A may be expressed, in this 
limit, as the gradient of a scalar function q (i.e. A = Vq). The modes have then been 
coupled to the electrons assuming a Frohlich type of interaction, e q ,  leading to an 
exaggerated scattering rate. The correct coupling should bep  - V q  and calculations are 
at present under way to determine the electron-polariton scattering rates [20]. 

3. The scattering rate 

We are now in a position to couple these modes to the electrons. It is often the case in 
transport studies that we are interested in the extreme quantum limit in which only 
the lowest subband is of importance. Here we only deal with this case although the 
generalisation to intersubband events is straightforward. 

Within the effective mass and parabolic band approximation the normalised electron 
wavefunctions are of the form 

Y(r, z )  = A-l l2  eik'rv(i)(z) 

E = Ek + E(i) 

(12)  

(13) 

with corresponding energy 

where Ek = h2k2/2m* and E(i) the subband energy. In the above A is the area of the slab, 
k the wavevector in the plane and m* the effective mass. The envelope function v ( i ) ( z )  
and subband energy E(i) depend on the choice of confining potential. We consider two 
types of potential, the often used infinite square well and the more realistic harmonic 
oscillator potential. 

The simplest confining potential is that of an infinite square well of width d .  The 
envelope function for the lowest subband is then 

with corresponding subband energy 

E ( l )  = h2n2/2m*d2. ( 1 5 )  

~ ( ~ ) ( z )  = n-1/42;1/2 e-z2/2zi (16) 

E(2) = &Q. (17) 

On the other hand, the harmonic oscillator confining potential (of frequency S 2 )  has the 
following subband wave function 

with zo = (h/m*Q)1/2 and subband energy 

In order to compare the two situations we take the width of the electron density for the 
quadratic potential Tpy2)(z)Tp(2)(z), to coincide with d the width of the square well (i.e. 
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Figure 2. The scattering rate as a function of slab thickness. The full curve illustrates the 
result obtained from an infinite confining potential whilst the broken curve that obtained 
assuming a harmonic potential. The full horizontal lines show the appropriate limiting values 
whilst the broken line is the bulk result [16]. 

z o  = 1 / 2 4 .  The Gaussian wavefunction q ( 2 ) ( z )  will only be a good representation if 
L S z O  which for a width d = 50 A will easily be the case in practice, otherwise a vari- 
ational wave function is required. 

The scattering rate is given by Fermi’s golden rule 

W = -  h i(f /f i i , tI i) \26(Ef -E i )dSf  (18) 2n I 
where i (f) stands for the initial (final) state and the integral is over all final states. The 
integration is straightforward and we find for the infinite square well 

with a = d / L ,  Q, = q,d, K = kd,  and Q ,  = (2m*oLo/h)”2d. The characteristic rate WO 
is given by 

W ,  = (e2 /4nh)(2m*wLo/h) ’12(1 /~ ,  - I /& , )  (20) 
with E, and E, the high and low frequency dielectric permittivities; for GaAs W O  - 
7.7 x 10l2 SKI. The function G(Q,) arises from the matrix element and is given by 

This is equivalent to the integral one obtains for Q ~ D  electrons interacting with bulk 
polar LO modes [3]. Note that (21) picks out only modes with odd m and the sum in (19) 
is over all these modes consistent with (8). The corresponding scattering rate for a 
harmonic potential is simply given by (19) but with G(Q,) replaced by G(Q,) where 

G(Q, )  = -Bsin(mn/2) e-Q5v2l4 (22) 

and y = zO/d .  As with the infinite square well, only phonons having odd index m 
contribute to the rate. 

Figure 2 illustrates the variation of the scattering rates as a function of slab thickness 
L. In both cases the electrons are confined to a sheet of width d = 50 A with a fixed 
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carrier in-plane kinetic energy, Ek = 5hwLo chosen. Qualitively both curves show the 
same features. For large wafer thicknesses they are asymptotic to the value obtained 
when the polar modes are simply bulk plane waves as indeed they should. For widths 
less than about 500 A the effects of phonon confinement manifest themselves and we 
find a marked reduction in the rate for small slab thickness. Similar behaviour is predicted 
for the corresponding Q I D  system [21].  (The curve corresponding to the quadratic 
potential terminates at L = 100 A as we require L S 25 A). It should be noted that the 
rate at L = 50 8, is consistent with the results of Riddoch and Ridley [19] although their 
rates for interface mode scattering (which are comparable to the standing mode rates) 
are overestimated due to the reasons outlined in the previous section. It is also predicted 
that the effect of a harmonic confining potential is to reduce the scattering rate (as 
compared to the infinite case) by around 17%. This is primarily due to the difference in 
subband energies and the penetration of the electron wavefunction outside the region 
-d/2 =z z S d/2.  Similar results are obtained in other calculations in which the carriers 
ae not strictly confined to a given region; e.g. [22]. The overall behaviour is, however, 
unaffected at least in the extreme quantum limit where we are dealing with intrasubband 
events. The situation may not be as straightforward for thicker confining regions where 
more than one subband is occupied since for a harmonic potential the subband sep- 
arations are equal whereas for the infinite square well they are not. We do not dwell on 
these complications here. 

4. Conclusion 

We set out in this investigation to look at the electron-polar-Lo-phonon interaction in 
novel thin free-standing GaAs wafers. Our aim was twofold. Firstly to determine the 
film thicknes that is needed to observe confined phonon effects in the scattering rate. 
For typical electron energies we find that film thicknesses less than about 500 A are 
required to observe deviations from bulk 3D phonon behaviour. As for scattering via 
interface modes, we have argued that employing a physically intuitive boundary con- 
dition no purely longitudinal surface modes are allowed. Surface phonon polaritons are, 
of course, normal modes of the system and a qualitative argument was outlined to show 
that their interaction with electrons ought to be weak (as compared to the LO standing 
waves). This is not believed to be the case in the GaAs/Al,Ga,-,As system ( x  s 0.3) 
in which purely longitudinal interface modes are predicted to exist and are mainly 
responsible for relaxing the carrier energy at high temperatures, especially for narrow 
wells [9]. This makes the prospect of fabricating high mobility devices with these free- 
standing structures promising, although the fabrication technology is still in its infancy. 
The details of the electron-polariton scattering needs to be quantified and work is 
underway in this direction. Secondly the effect of a more realistic harmonic confining 
potential was considered. Although the qualitative behaviour is unaffected, the rate 
associated with a quadratic confining potential is found to be about 17% less than that 
associated with the infinite well. It is interesting to note that for the parameters chosen 
the rate associated with the harmonic oscillator potential lies below the well-known 
scattering rate for bulk 3D electrons emitting bulk 3D phonons. 
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